Development of maximum entropy model at home and abroad and its applications in different climatic backgrounds and regional scales
-
摘要: 物种分布模型(Species Distribution Models, SDMs)作为生物地理学及宏观生态学的重要研究方法,在生命科学及环境科学领域发挥重要作用,在诸多物种分布模型中,最大熵模型(Maximum Entropy model; MaxEnt)因其数据要求较低、预测精确率较高、使用步骤简便等优点,在众多物种分布模型中脱颖而出,也在不断发展过程中得以优化及改进。通过对目前公开发表的MaxEnt模型相关文献及著作进行分析,尝试从MaxEnt模型国内外研究进展、不同气候背景下的应用、区域方面的应用三个角度叙述其发展历程及优化提升。在综合分析基础上,采用扩大预测范围及预测数据样本量建立模型的方法策略,从而解决物种数据量过少或评估调查区域生物多样性空白这一问题。Abstract: As an important research method in biogeography and macroecology, Species Distribution Models(SDMs) play an important role in the fields of life science and environmental science. Among many species distribution models, Maximum Entropy model(MaxEnt) stands out among them because of its advantages such as its low data requirements, high predicted accuracy, easy-to-use operational steps and so on. By reading the related literatures and works about Maximum Entropy model currently published, we tried to describe its development process and optimization from three perspectives: the development of the Maximum Entropy model at home and abroad, its applications in different climatic backgrounds and regional scales. On the basis of comprehensive analysis, we adopt an idea of expanding the prediction range and the sample size of prediction data to build a model to solve the problem of too little data and the investigation of biodiversity in blank areas.
-
-
[1] 王娟,倪健.植物种分布的模拟研究进展[J].植物生态学报, 2006(6):1040-1053. [2] Anderson R. P. A framework for using niche models to estimate impacts of climate change on species distributions[J]. Annals of the New York Academy of Sciences, 2013, 1297(1):8-28.
[3] 郭彦龙,赵泽芳,乔慧捷,等.物种分布模型面临的挑战与发展趋势[J].地球科学进展, 2020,35(12):1292-1305. [4] 欧阳泽怡,欧阳硕龙,吴际友,等.最大熵模型在植物适生区预测应用中的研究进展[J].湖南林业科技, 2022, 49(1):83-88. [5] Thuiller, W., Lafourcade, B., Engler, R., et al.BIOMOD-A platform for ensemble forecasting of species distributions[J]. Ecography, 2009, 32:369-373.
[6] Clarivate. ISI Web of Science.[DB/OL].(2022-01)[2022-06-17]. https://www.webofscience.com/wos/alldb/basic-search
[7] 朱耿平,刘国卿,卜文俊,等.生态位模型的基本原理及其在生物多样性保护中的应用[J].生物多样性, 2013, 21(1):90-98. [8] Busby, J. BIOCLIM-A bioclimate analysis and prediction system[J]. Plant protection quarterly,1991, 6:8-9.
[9] 许仲林,彭焕华,彭守璋.物种分布模型的发展及评价方法[J].生态学报, 2015, 35(2):557-567. [10] Elith, J., Graham C. H., Anderson R. P., et al. Novel methods improve prediction of species' distributions from occurrence data[J]. Ecography, 2010,29(2):129-151.
[11] Phillips S. J., Anderson R. P., Schapire R. E.Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3):231-259.
[12] Elith, J., Phillips, S. J., Hastie, T. J., et al. A statistical explanation of MaxEnt for ecologists[J].Diversity and Distributions, 2010:1-15.
[13] 张宁.熵概念研究[J].北京联合大学学报(自然科学版), 2007(1):1-3. [14] Jaynes E. T. Information theory and statistical mechanics[J]. Physical Review, 1957, 106(4):1-620.
[15] Merow, C., Smith, M. J., Silander, J. A. A practical guide to MaxEnt for modeling speciesdistributions:what it does, and why inputs and settings matter[J].Ecography, 2013, 36, 1058-1069.
[16] 白君君,侯鹏,赵燕红,等.物种生境适宜性模型及验证的研究进展[J/OL].生态学杂志,2022,41(7). [17] Peterson, A. T., Papes, M., Eaton, M. D.Transferability and model evaluation in ecological niche modeling:a comparison of GARP and Maxent[J].Ecography, 2007, 30, 550-560.
[18] 王运生,谢丙炎,万方浩,等. ROC曲线分析在评价入侵物种分布模型中的应用[J].生物多样性,2007(4):365-372. [19] 李明阳,巨云为, Sunil Kumar,等美国大陆外来入侵物种斑马纹贻贝(Dreissena polymorpha)潜在生境预测模型[J].生态学报,2008(9):4253-4258. [20] 李白尼,马骏,侯柏华,等.基于生态位模型的番荔枝实蝇潜在适生性分布预测[J].环境昆虫学报,2009,31(4):291-299. [21] 曹向锋,钱国良,胡白石,等.采用生态位模型预测黄顶菊在中国的潜在适生区[J].应用生态学报,2010,21(12):3063-3069. [22] 郭乃嘉.基于生态位模型的中间香型烤烟生态适宜区潜在分布预测[D].重庆:西南大学,2013. [23] 孔晓泉.物种分布模型的稳定性评估及应用软件[D].安庆:安庆师范学院,2015. [24] Phillips, S. J., Dudík M. Modeling of species distributions with maxent:new extensions and a comprehensive evaluation[J]. Ecography, 2008,31(2):161-175.
[25] Phillips S. J., Miroslav Dudík, Elith J., et al. Sample selection bias and presence-only distribution models:implications for background and pseudo-absence data[J]. Ecological Applications, 2009, 19(1):181-197.
[26] Anderson, R. P., Gonzalez, I. Species-specific tuning increases robustness to sampling bias in models of species distributions:An implementation with Maxent[J]. Ecological Modelling, 2011, 222(15):2796-2811.
[27] 刘勇涛,戴志聪,薛永来,等.外来入侵植物南美蟛蜞菊在中国的适生区预测[J].广东农业科学,2013,40(14):174-178. [28] 张天蛟,刘刚.提高生态位模型时间转移能力的方法研究[J].中国农业大学学报,2017,22(2):98-105. [29] Syfert MM., Smith MJ., Coomes DA. The Effects of Sampling Bias and Model Complexity on the Predictive Performance of MaxEnt Species Distribution Models[J].Plos One. 2013, 8(2):e55158.
[30] Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., et al. The importance of correcting for sampling bias in MaxEnt species distribution models[J]. Diversity and Distributions, 2013, 19:1366-1379.
[31] 孔维尧,李欣海,邹红菲.最大熵模型在物种分布预测中的优化[J].应用生态学报,2019,30(6):2116-2128. [32] Volkov, I., Banavar, J. R., Hubbell, S. P., et al.Inferring species interactions in tropical forests[J].Proceedings of the National Academy of Sciences,2009, 106:13854-13859.
[33] Williams, R. J. Simple MaxEnt models explain food web degree distributions[J]. Theoretical Elology,2010, 3(1):45-52.
[34] 杨启杰.基于MaxEnt模型的孑遗植物桫椤在不同时期的潜在适生区研究[D].杭州:浙江大学,2021. [35] 颜明艳,李琼珍,宋洁,等.基于MAXENT模型评估北部湾潮间带中国鲎和圆尾鲎稚鲎的潜在地理分布及种群保育对策[J].生态学报,2019,39(9):3100-3109. [36] 油志远,王茗,鲁碧耕,等.基于MaxEnt模型预测蓝马鸡的潜在分布区[J].生态学杂志,2022,41(11):2271-2271. [37] 鲁碧耕,骆念龙,谢凡,等.黑颈鹤在四川省白玉县的繁殖栖息地质量评估[J].西南民族大学学报(自然科学版),2022, 48(3):237-244. [38] 李行,黄尤优,阮涛,等.基于MaxEnt模型的邛崃山系中华小熊猫栖息地适宜性评价[J].贵州师范大学学报(自然科学版),2022, 40(2):34-39. [39] 胡超,于静.基于MaxEnt和GIS预测四川省杉木良种在湖北省同一适宜引种生态区[J].四川林业科技, 2022, 43(3):85-93. [40] 林正雨,陈强,陈春燕,等.基于MaxEnt模型评估赤霞珠在川西横断山河谷的适生空间分布[J].中国农业资源与区划, 2020, 41(12):144-155. [41] 叶雨,樊丛照,张际昭,等.基于MaxEnt和GIS的新疆紫草产地生态适宜性分析[J].中国现代中药,2022, 24(5):770-775. [42] 胡政香,诺明达来,余权威,等.新疆地区草原革蜱MaxEnt分布预测分析[J].生态科学, 2022,41(4):92-101. [43] 杨艺涛,杜玉壮,李乙冉,等.基于MaxEnt模型对我国长角涵螺潜在分布区的预测研究[J].中国媒介生物学及控制杂志, 2022, 33(3):409-413. [44] 武万里,刘垚,马菁,等.基于Maxent模型的宁夏枸杞瘿螨适生性分析[J].山地农业生物学报,2022, 41(2):66-70. [45] 高浩翔,申立泉,刘瑞,等.基于MAXENT模型的野生马麝夏季生境适宜性研究[J/OL].生态学报,2022. [46] 文世荣,方国,张明霞,等.基于MaxEnt模型的西双版纳保护区曼稿片区印度野牛生境适应性分析保护建议[J].山东林业科技, 2022, 52(02):27-31+38. [47] Warren, R. F., VanDerWal, J., Price, J. T., et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss[J]. Nature Climate Change, 2013, 3(7):678-682.
[48] 刘超,董星光,田路明,等.基于Maxent模型的川梨不同时期潜在分布研究[J].果树学报,2022,39(11):2056-2063 [49] IPCC, 2021:Climate Change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the IPCC[M].Cambridge University Press, United Kingdom 2021.
[50] 张天蛟.产漂流性卵小型鱼类的生态位建模及分析[D].北京:中国农业大学, 2016. [51] 张立娟,李艳红,任涵,等.气候变化背景下青冈分布变化及其对中国亚热带北界的指示意义[J].地理研究, 2020, 39(4):990-1001. [52] Guo Y., Zhao Z., Zhu F. X., et al. Climate change may cause distribution area loss for tree species in southern China[J]. Forest Ecology and Management, 2022,511:120134.
[53] Alabar, F., Politi, N., Názaro, P., et al. Changes in the potential distribution of valuable tree species based on their regeneration in the Neotropical seasonal dry forest of north-western Argentina[J]. Environmental Conservation, 2022, 49(2):83-89.
[54] Aidoo O. F., Souza P. G. C., Silva R. S. da, et al.Climate-induced range shifts of invasive species(Diaphorina citri Kuwayama)[J]. Pest management science, 2002, 78:2534-2549.
[55] Mu, C., Guo, X., Chen, Y. Impact of Global Climate Change on the Distribution Range and Niche Dynamics of Eleutherodactylus planirostrish in China[J].Biology, 2022, 11(4):588.
[56] Liu G., Mai J.. Habitat shifts of Jatropha curcas L. in the Asia-Pacific region under climate change scenarios[J]. Energy, 2022, 251, 123885.
[57] 马世炎,于洪春,赵奎军,等.基于MaxEnt模型的大豆蚜全球潜在地理分布分析[J].昆虫学报,2022(5):2-9. [58] 王波,黄勇,李家堂,等.西南喀斯特地貌区两栖动物丰富度分布格局与环境因子的关系[J].生物多样性, 2018, 26(9):941-950. [59] 赵梓伊,肖能文,刘高慧,等.五种齿突蟾在横断山南潜在地理分布预测[J].生态学报, 2022,42(7):2636-2647. [60] Hernandez, P. A., Graham, C. H., Master, L. L., et al.The effect of sample size and species characteristics on performance of different species distribution modeling methods[J]. Ecography, 2006, 29, 773-785.
[61] El-Gabbas A. and Dormann C. F. Improved speciesoccurrence predictions in data-poor regions:using large-scale data and bias correction with downweighted poisson regression and maxent[J]. Ecography,2018, 41(7):1161-1172.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0